HOW TO CUSTOMIZE ENCODING, PACKAGING & DRMS FOR OTT

YURIY REZNIK | YREZNIK@BRIGHTCOVE.COM

OUTLINE

- About Brightcove
- Brightcove VideoCloud architecture
- Key challenges and means of addressing them
 - Dynamic delivery
 - Quality assessment
 - Encoding
- ABR profile generation
 - Single codec case
 - Multi-codec case
- Practical examples
- Q&A

ABOUT BRIGHTCOVE

GLOBAL PRESENCE & REACH

VIDEOCLOUD ARCHITECTURE

• VOD delivery chain:

- Key features:
 - **CAE** = context-aware encoding
 - Internal format is used for storage of transcoded streams
 - Just-in-time manifest generation and packaging
 - 2 layers of CDNs for media delivery
 - Analytics engine & closed loop to CAE

KEY PROBLEMS & MEANS OF ADDRESSING THEM

Challenge	Mean(s)	Examples/Comments
Scale	Use of CDNs, cloud, edge platforms	
Time-varying network capacity	ABR streaming with different rates	E.g. 400, 800, 1200 Kbps streams
Different screens	ABR streaming with different resolutions	E.g. 480p, 720p, 1080p streams
Multiple codecs	Multi-codec profiles, client detection, manifest filtering	E.g. selective use of HEVC
Multiple video formats	Multi-representation profiles, client detection, manifest filtering	E.g. SDR, HDR10, HLG, DV, etc.
Multiple delivery formats	Dynamic packaging & delivery	E.g. HLS for Apple devices, DASH for CTVs
Multiple DRMs	Dynamic packaging & delivery	E.g. FairPlay for Apple, Widevine for Androids
Differences in mezzanine formats	Pre-processing, quality analysis	Deinterlace, inverse telecine, etc.
Differences in content complexity	Content aware encoding	aka Per-title-encoding
Differences in usage patterns	Context aware encoding	Pioneered by Brightcove CAE
Differences in network statistics	Context aware encoding	Pioneered by Brightcove CAE
End-to-end efficiency	Context aware encoding	Pioneered by Brightcove CAE

7

WHY DYNAMIC PACKAGING & DELIVERY IS NEEDED?

- Basically we live in multi-DRM world
 - Apple devices require FairPlay
 - Androids need Widevine
 - Game consoles, and some TVs need PlayReady
- Then come delivery formats
 - HLS (v3+, TS-based) needed by old Apple devices
 - DASH (IOP v1.0+) needed by smart TVs
 - HLS (v23+, MP4-based) can finally support CMAF
- And then there are codecs
 - H.264, HEVC, VP8-9, AV1, etc.
 - Support for which also varies among devices & OSes

Med	ia players	PlayReady	Widevine Modular	Widevine	FairPlay	Primetime	Marlin	CML
	Chrome (35+)	8	0	8	8	8	8	8
	Firefox (47+) ¹ ON WINDOWS VISTA+, MAC OS X 10.9+, LINUX	8	0	8	8	8	0	8
/sers	Internet Explorer (11) ON WINDOWS 8.1-	0	8	8	8	8	8	C
Srow	Microsoft Edge	0	8	8	8	8	8	C
	Opera (31+)	8	0	8	8	8	8	C
	Safari SAFARI 8- ON MACOS & SAFARI ON IOS 11.2-	8	8	8	0	8	8	C
	Android (6+) ²	8	0	8	8	8	8	C
e	Android (4.4 - 5.1)	0	0	0	\odot	•	8	C
lobi	Android (3.1 - 4.3)	8	8	0	8	\odot	8	C
2	iOS (6+)	8	8	8	0	8	8	C
	Windows Phone	0	8	8	8	8	8	C
	Chromecast	0	0	8	8	8	8	C
xes	Android TV	0	0	8	8	8	8	C
ę	Roku	0	0	8	8	0	8	C
ţ	Apple TV	8	8	8	0	8	8	C
Set	Amazon Fire TV	0	8	8	8	8	8	C
	Google TV	0	8	0	8	8	8	¢
	Samsung (Tizen) 2017-2018- MODELS	0	0	\otimes	8	8	0	¢
s	Samsung (Tizen) 2015-2017 MODELS	0	8	0	8	0	•	¢
5	Samsung (Orsay) ³ 2010-2015 MODELS	0	0	0	8	8	8	¢
mar	LG (webOS & Netcast)	0	0	0	0	8	٢	C
0,	Smart TV Alliance ⁴ LG, PHILIPS, TOSHIBA, PANASONIC	0	0	0	8	0	•	¢
	Android TV	0	0	8	8	8	8	C
പ	Xbox One / 360	0	8	8	8	8	8	C
ğ	PlayStation 3 / 4	0	0	8	3	8	0	C
ຽ	<u>TNT</u> (2.0+)	0	8	0	•	8	0	C
Spe	HbbTV (1.5+)	0	0	8	Θ	0	0	C

© Brightcove Inc. All Rights Reserved.

WHY MANIFEST FILTERING IS NEEDED?

- To ensure we send streams that devices can decode!
- Example: delivery of HEVC streams:

- Device detection:
 - Determines type of client requesting access to manifest
- Manifest filtering logic:
 - removes HEVC streams from manifests if requesting device is a legacy, non-HEVC capable device
 - removes H.264 streams from manifests heading to HEVC capable non-switchable devices
 - leaves both HEVC and H.264 streams if devices are capable of decoding both codecs and switching between them
- 2-codec manifests:
 - HLS: mixed variant streams (ordered by bitrate)
 - DASH: separate adaptation sets for HEVC and H.264 + supplemental properties declaring them as switchable

TRANSCODING

• Single rate transcoding

ABR transcoding:

• Key operations:

0

0

0

0

0

QC – quality checks

Ladder design = CAE

Pre-processing

Efficient encoding

Conformance checks

۰

Job request, Video processing Ladder of ABR targets Video processing Video processing ÷. Video processing Video processing

10

QUALITY CHECKS

- In many cases we just receive mezzanine and have to figure out what quality of content it has
- There are several techniques available:
 - Prediction of PSNR based on QPs and distributions of TCoeffs
 - Eden 2007, Elecard ePSNR, etc.
 - Parametric metrics:
 - ITU-T P.1203.1
 - recent standard, accounts for many effects such as upscale factor, temporal quality variations, etc.
 - Non-reference metrics:
 - BRISQUE (Mittal el at, 2012)
 - BLIINDS (Saad et al, 2010)
 - STAIND (Chu et al, 2012)
 - etc.
- None of them is perfect, but they certainly can be used to spot obvious problems and improve robustness of the product

RELATIONSHIP BETWEEN QUALITY OF OUTPUT AND MEZZANINE

• Let's take a look at processing chain & 3 measurements:

• In other words, if you must to ensure certain end-to-end quality, you **must have at least 3dB extra** at mezzanine encoding level! This has to be checked first.

PRE-PROCESSING

Key functions:

- understand what type of content it is (which may be different from the way it was previously encoded)
 - progressive / interlace / telecine, cadence type, field order, etc.
- minimize artifacts introduced by prior generation encoder or sampling process
 - blocking, ringing, broken lines, temporal noise, etc.
- perform conversion from source format to format needed for delivery. This includes conversions of:
 - spatial resolution
 - chroma sampling type (4:4:4, 4:2:2, 4:2:0, different kinds of 4:2:0)
 - frame rate
 - temporal sampling type (progressive, telecine, interlace, field order)
 - color (gamma, matrix, primaries, EOTF, mastering display color volume, other display-related metadata, etc.).

Processing chain:

ON CHOICES OF RESOLUTIONS

In theory, the more resolutions are available the better:

allows better quality / rate tradeoffs: •

In practice, the choices are also constrained by

- content owners •
- industry forum guidelines: DVB, HBBTV, DTV, etc. ۰
- capabilities of playback devices ۰

But equally important is also to look at

- actual distributions of resolutions of players as the play the content! ۰
- the closer they can be matched the better ۰

Visual Acuity

ENSURING INTEROPERABILITY

VBR / HRD control

- for ABR delivery all streams must be capped VBR !!!
 - the use of highly-variable VBR encoding may confuse clients and cause buffering
- typically, maximum bitrate cap is set to about 10-35% above average bitrate
 - must be lower than next target bitrate in the ABR encoding ladder
- decoder buffer size must also be limited

GOP length and type

- GOP length must be shorter or equal than GCD of delivery segment lengths
 - E.g. for 4,6, and 10-sec segments, GOP <= gcd(4,6,10) = 2 sec.
- GOP length may also be affected by the need to support SSAI / splicing
- closed GOP, SAP type 1 is a requirement for HLS

Profiles & levels

- H.264 Baseline profile is needed for legacy devices (e.g. mobiles prior to 2012)
- Main profile is adequate for streams of up to 720p
- High is better for 1080p and beyond
- Level must be sufficient to allow given resolution, framerate, bitrate, CPB size

Reference frames, B frames:

- for legacy devices (e.g. mobiles prior to 2012) no B frames, 1 reference
- most STBs can support up to 4 reference frames, 3 B-frames

Example of uncapped VBR behavior:

Example level/profile combinations:

Profile	Level	@codec Parameter (avc1 sample entry)	@codec Parameter (avc3 sample entry)
Constrained Baseline	2.1	avc1.42c015	avc3.42c015
Constrained Baseline	3.0	avc1.42c01e	avc3.42c01e
Main	3.0	avc1.4d401e	avc3.4d401e
Main	3.1	avc1.4d401f	avc3.4d401f
High	3.0	avc1.64001e	avc3.64001e
High	3.1	avc1.64001f	avc3.64001f
High	3.2	avc1.640020	avc3.640020
High	4.0	avc1.640028	avc3.640028

15

CONTEXT AWARE ENCODING

• Overall architecture:

- Context Aware Encoding (CAE) is basically a
 - ABR encoding profile generator that considers:
 - properties of content and
 - properties of networks and devices used to receive content

ABR ENCODING PROFILES

- Define sets of encoding parameters for each rendition
 - Resolutions, Bitrates, Codec constraints, etc.
- Examples of existing ABR profiles:
 - Apple HLS guidelines:

HEVC/H.265	H.264/AVC	Resolution	Frame rate
145	145	416 x 234	≤ 30 fps
350	365	480 x 270	≤ 30 fps
660	730	640 x 360	≤ 30 fps
990	1100	768 x 432	≤ 30 fps
1700	2000	960 x 540	same as source
2400	3000	1280 x 720	same as source
3200	4500	same as source	same as source
4500	6000	same as source	same as source
5800	7800	same as source	same as source

Brightcove VideoCloud (legacy static profiles):

video bitrate	decoder bitrate cap	decoder buffer size	max frame rate	width	height	h264 profile
450	771	1028	30	480	270	baseline
700	1194	1592	30	640	360	baseline
900	1494	1992	30	640	360	main
1200	1944	2592	30	960	540	main
1700	2742	3656	30	960	540	main
2500	3942	5256	30	1280	720	main
3500	5442	7256	30	1920	1080	high
3800	6192	8256	30	1920	1080	high

WHY STATIC ABR PROFILES ARE BAD?

- Static encoding profiles are not accounting for:
 - differences in video complexity:

differences in networks:

differences in devices & user preferences:

- A better approach is to design encoding profiles dynamically, accounting for characteristics of
 - content \rightarrow content-aware encoding (aka per-title encoding)
 - network \rightarrow network-aware encoding
 - full context (content + network + user statistics) \rightarrow context-aware encoding

DESIGN OF OPTIMAL ABR ENCODING PROFILES

© Brightcove Inc. All Rights Reserved.

CONTENT, CODECS, QUALITY METRICS

- Content may vary in complexity
 - E.g. cartoons take less bits to encode than high-action sports
- Codecs vary in efficiency
 - E.g. HEVC in most cases is more efficient than H.264
 - AV1 and VVC are even better
 - But differences are content-dependent
 - And in many cases deltas can be small (e.g. 10-20%)
- There are many "quality" metrics
 - MSE and PSNR measure average amount of noise
 - SSIM normalizes it by local energy, making it closer to "contrast sensitivity"
 - VDP and PQR use more sophisticated models of vision
 - VMAF fuses several basic metrics still work in progress
- However, for each combination of (content, codec, metric) it is always possible to define **quality-rate function Q(R)**

Examples of quality-rate functions

Content: "Easy" = cartoon, "Complex" = soccer game, 720p24 Codecs: H.264, HEVC (main profile, 2sec GOP, CRF rate control) Metric: SSIM

NETWORK MODELS

- This is something that needs be measured by using player or CDN-originated logs
- Such distributions will be different for each category of receiving devices, region, CDN configuration, etc.

• But regardless of the context, and measurement technique, what matters in the end – is **bandwidth distribution model p(R)**

Examples of network models

Networks: LTE with 10 and 20 users in a cell

Based on: TCP-level throughput measurements reported in: J. Karlsson, and M. Riback. Initial field performance measurements of LTE, Ericsson review, 3, 2008.

CLIENT MODELS

- Let's assume that R_1, \ldots, R_n denote rates of encoding ladder, and R denotes available network bandwidth
- Then, the simplest conceptual client model is the following:

• Then, using such model we can easily compute **average rate** and **average quality** delivered by the system: $\bar{R}(R_1, ..., R_n, p) = \int_0^{\infty} R^{selected}(R)p(R)dR$, $\bar{Q}(R_1, ..., R_n, p) = \int_0^{\infty} Q^{selected}(R)p(R)dR$ where p(R) is a bandwidth distribution model.

© Brightcove Inc. All Rights Reserved.

QUALITY-OPTIMAL LADDERS

• Conceptually, ABR streaming system can be understood as a chain:

$$\bar{R} = \int_{0}^{\infty} R^{selected}(R) p(R) dR$$
$$\mathcal{L} = \{(R_i, Q_i), i = 1, ..., n\} \qquad \bar{Q} = \int_{0}^{\infty} Q^{selected}(R) p(R) dR$$
Source Encoder Rate selector + Decoder \bar{R}, \bar{Q}

- One problem that can be immediately posed is following:
 - given the number of renditions n, quality-rate model Q(R), and network model p(R)
 - find a set of rates $\hat{R}_1, \dots, \hat{R}_n$, such that:

$$\overline{Q}(\widehat{R}_{1},\ldots,\widehat{R}_{n},p) = \max_{\substack{R_{\min} < R_{1} \leq \cdots \leq R_{n} < R_{\max} \\ R_{1} \leq R_{1,\max}}} \overline{Q}(R_{1},\ldots,R_{n},p)$$

- We will call ABR ladder with rates \widehat{R}_1,\ldots , \widehat{R}_n -- quality-optimal ladder

EXAMPLES OF QUALITY-OPTIMAL LADDERS

"Easy" content, H.264, Network 1:

n	Ladder Bitrates [kbps]	Q _n	\overline{Q}	R
2	91, 719	0.9700	0.9607	627.5
3	59, 403, 1222	0.9767	0.9676	929.4
4	50, 293, 773, 1736	0.9802	0.9706	1160
5	50, 242, 585, 1123, 2214	0.9824	0.9723	1331
6	50, 209, 473, 850, 1421, 2568	0.9836	0.9733	1445
7	50, 187, 401, 692, 1087, 1687, 2843	0.9844	0.9739	1527
8	50, 170, 351, 589, 893, 1302, 1933, 3076	0.9849	0.9744	1590

"Complex" content, H.264, Network 1:

n	Ladder Bitrates [kbps]	Q _n	\overline{Q}	R
2	210, 946	0.8971	0.8598	773.8
3	147, 576, 1456	0.9182	0.8796	1043
4	114, 418, 928, 1942	0.9301	0.8893	1239
5	93, 327, 686, 1233, 2339	0.9369	0.8951	1375
6	79, 267, 544, 925, 1499, 2640	0.9409	0.8988	1470
7	69, 226, 451, 744, 1137, 1735, 2868	0.9436	0.9013	1540
8	61, 197, 387, 627, 930, 1338, 1967, 3099	0.9460	0.9032	1599

"Easy" content, HEVC, Network 1:

n	Ladder Bitrates[kbps]	Q_n	\overline{Q}	R
2	85, 695	0.9755	0.9674	611.3
3	54, 384, 1188	0.9812	0.9735	913
4	50, 286, 758, 1706	0.9843	0.9761	1151
5	50, 237, 573, 1104, 2182	0.9861	0.9775	1323
6	50, 205, 463, 835, 1399, 2537	0.9871	0.9784	1438
7	50, 183, 393, 679, 1068, 1662, 2812	0.9878	0.979	1520
8	50, 166, 343, 577, 876, 1280, 1904, 3045	0.9883	0.9794	1584

"Complex" content, HEVC, Network 1:

n	Ladder Bitrates[kbps]	Q_n	\overline{Q}	R
2	163, 860	0.9292	0.9044	721.2
3	111, 509, 1363	0.9442	0.9191	1000
4	85, 364, 859, 1847	0.9524	0.9261	1205
5	69, 281, 630, 1169, 2261	0.9573	0.9302	1350
6	58, 228, 494, 870, 1437, 2576	0.9601	0.9328	1450
7	51, 192, 408, 697, 1087, 1682, 2830	0.9621	0.9346	1526
8	50, 174, 356, 592, 893, 1298, 1922, 3059	0.9636	0.9359	1589

Notations: Q_n is quality at top rendition [SSIM], \overline{Q} is an average quality [SSIM], and \overline{R} is an average bitrate [Kbps].

© Brightcove Inc. All Rights Reserved.

MULTI-CODEC ABR PROFILES

- Consider now a system with
 - 2 codecs, e.g. H.264 and HEVC
 - 3 types of client devices:
 - 1st can decode only first codec (H.264)
 - 2nd can decode only second codec (HEVC), and
 - 3rd can decode streams encoded using **both codecs**, and it that can also switch between such streams
- The existence of the **3rd type** of client is important, as it could, in principle, achieve better quality than the other two clients:
- This of course requires special design of a mixed ladder: interleaving of rates allocated to each codec, making sure that quality-wise they form monotonically increasing sequence, that steps between renditions offer meaningful increments, etc. But this is all doable!

QUALITY OPTIMAL 2-CODEC LADDERS

• Let's now formalize the problem of optimal design of dual-codec ladder:

• The problem: find numbers $\hat{n}_1 + \hat{n}_2 = n$, and ladder rates $\hat{R}_1^1, \dots, \hat{R}_1^{\hat{n}_1}$ and $\hat{R}_2^1, \dots, \hat{R}_2^{\hat{n}_2}$, such that overall quality \bar{Q}_{Σ} is maximal:

$$\bar{Q}_{\Sigma}\left(p,\pi,n,\hat{R}_{1}^{1},\ldots,\hat{R}_{1}^{\hat{n}_{1}},\hat{R}_{2}^{1},\ldots,\hat{R}_{2}^{\hat{n}_{2}}\right) = \max_{\substack{n_{1}+n_{2} = n \\ R_{\min} \leq R_{1}^{1} \leq \ldots \leq R_{1}^{n_{1}} \leq R_{\max} \\ R_{\min} \leq R_{2}^{1} \leq \ldots \leq R_{2}^{n_{2}} \leq R_{\max} \\ R_{1}^{1},R_{2}^{1} \leq R_{\max}^{1} \\ R_{1}^{1},R_{1}^{1} \leq R_{\max}^{1} \\ R_{1}^{1},R_{1}^{1} \leq R_{\max}^{1} \\$$

OPTIMAL 2-CODEC LADDERS

n	H.264 bitrates [kbps]	HEVC bitrates [kbps]	Q_n	$\overline{\pmb{Q}}_{\Sigma}$	\overline{R}_{Σ}
2	91, 719		0.97	0.9607	627.4
3	59, 403, 1222		0.9767	0.9676	929.3
4	50, 293, 773, 1736		0.9802	0.9706	1160
5	50, 242, 585, 1123, 2214		0.9824	0.9723	1331
6	91, 719	50, 286, 758, 1706	0.9843	0.9733	1050
7	59, 403, 1222	50, 286, 758, 1706	0.9843	0.9744	1152
8	59, 403, 1222	50, 237, 573, 1104, 2182	0.9861	0.9756	1249

• Network 1, "Easy" content, 2-codec ladder, $\pi_{hevc} = 0.4$, $\pi_{h264} = 0.2$:

• Optimal H.264-only ladders:

n	Ladder Bitrates [kbps]	Q_n	\overline{Q}	\overline{R}
2	91, 719	0.97	0.9607	627.5
3	59, 403, 1222	0.9767	0.9676	929.4
4	50, 293, 773, 1736	0.9802	0.9706	1160
5	50, 242, 585, 1123, 2214	0.9824	0.9723	1331
6	50, 209, 473, 850, 1421, 2568	0.9836	0.9733	1445
7	50, 187, 401, 692, 1087, 1687, 2843	0.9844	0.9739	1527
8	50, 170, 351, 589, 893, 1302, 1933, 3076	0.9849	0.9744	1590

Observations:

- if n<6 single codec (H.264) is used
- at n=6 dual-codec ladder attains same average quality as 6-point H.264 ladder, yet reducing bitrate by almost 40%
- at n=7 dual codec ladder attains same quality as 8stream H.264 ladder + 4-stream HEVC ladder constructed separately

Optimal HEVC-only ladders:

n	Ladder Bitrates[kbps]	Q_n	\overline{Q}	\overline{R}
2	85, 695	0.9755	0.9674	611.3
3	54, 384, 1188	0.9812	0.9735	913
4	50, 286, 758, 1706	0.9843	0.9761	1151
5	50, 237, 573, 1104, 2182	0.9861	0.9775	1323
6	50, 205, 463, 835, 1399, 2537	0.9871	0.9784	1438
7	50, 183, 393, 679, 1068, 1662, 2812	0.9878	0.979	1520
8	50, 166, 343, 577, 876, 1280, 1904, 3045	0.9883	0.9794	1584

OPTIMAL 2-CODEC LADDERS, COMPLEX CONTENT

n	H.264 bitrates [kbps]	HEVC bitrates [kbps]	Q_n	\overline{Q}_{Σ}	\overline{R}_{Σ}
2	210, 946		0.8971	0.8598	773.7
3	391	163, 860	0.9292	0.8833	651.6
4	391	111, 509, 1363	0.9442	0.8956	879.9
5	210, 946	111, 509, 1363	0.9442	0.9072	954.9
6	210, 946	85, 364, 859, 1847	0.9524	0.9129	1118
7	147, 576, 1456	85, 364, 859, 1847	0.9524	0.9168	1172
8	147, 576, 1456	69, 281, 630, 1169, 2261	0.9573	0.9201	1288

• Network 1, "Complex" content, 2-codec ladder, $\pi_{hevc} = 0.4$, $\pi_{h264} = 0.2$:

• Optimal H.264-only ladders:

n	Ladder Bitrates [kbps]	Q _n	\overline{Q}	\overline{R}
2	210, 946	0.8971	0.8598	773.8
3	147, 576, 1456	0.9182	0.8796	1043
4	114, 418, 928, 1942	0.9301	0.8893	1239
5	93, 327, 686, 1233, 2339	0.9369	0.8951	1375
6	79, 267, 544, 925, 1499, 2640	0.9409	0.8988	1470
7	69, 226, 451, 744, 1137, 1735, 2868	0.9436	0.9013	1540
8	61, 197, 387, 627, 930, 1338, 1967, 3099	0.946	0.9032	1599

© Brightcove Inc. All Rights Reserved.

Observations:

- if n<3 single codec (H.264) is used
- at n=3 dual-codec ladder attains higher average quality as 3-point H.264 ladder, yet reducing bitrate by almost 40%
- at n=5 dual-codec ladder attains quality comparable to one of 8-stream H.264 + 2-stream HEVC ladders constructed separately!

Optimal HEVC-only ladders:

n	Ladder Bitrates[kbps]	Q_n	\overline{Q}	\overline{R}
2	163, 860	0.9292	0.9044	721.2
3	111, 509, 1363	0.9442	0.9191	1000
4	85, 364, 859, 1847	0.9524	0.9261	1205
5	69, 281, 630, 1169, 2261	0.9573	0.9302	1350
6	58, 228, 494, 870, 1437, 2576	0.9601	0.9328	1450
7	51, 192, 408, 697, 1087, 1682, 2830	0.9621	0.9346	1526
8	50, 174, 356, 592, 893, 1298, 1922, 3059	0.9636	0.9359	1589

SOME REFERENCES

Original paper on quality-optimal streaming:

Y. Reznik, K. Lillevold, A. Jagannath, J. Greer, and J. Corley, "Optimal design of encoding profiles for ABR streaming," *Proc. Packet Video Workshop*, Amsterdam, The Netherlands, June 12, 2018.

Multi-codec ladder design optimizations:

Y. Reznik, X. Li, K. Lillevold, A. Jagannath, and J. Greer, "Optimal Multi-Codec Adaptive Bitrate Streaming," *Proc. IEEE Int. Conf. Multimedia and Expo (ICME)*, Shanghai, China, July 8-12, 2019.

Additional details and case studies:

Y. Reznik, X. Li, K. Lillevold, R. Peck, T. Shutt, R. Marinov, "Optimizing Mass-Scale Multi-Screen Video Delivery," *Proc. 2019 NAB Broadcast Engineering and Information Technology Conference*, Las Vegas, NV, April 6-11, 2019.

IN PRACTICE...

© Brightcove Inc. All Rights Reserved.

CAE PROFILE GENERATOR

"CAE" ingest profiles in VideoCloud and Zencoder:

Ingest Profile	
	,
CONTEXT AWARE ENCODING (RECOMMENDED)	Į
multi-platform-standard-dynamic	
low-bandwidth-dynamic	1
multi-platform-extended-dynamic	

- In VideoCloud there are several standard CAE profiles, as shown above.
- Advanced users can also define custom CAE profiles using JSON descriptor.
- This way users may specify limits for:
 - number of renditions
 - range of bitrates to be used
 - list of allowed video resolutions, framerates, codecs, codec profiles & levels
 - $_{\circ-}$ allowed granularity of rate steps in the profile
 - network and usage statistics, etc.

Example custom CAE profile:

```
"id": "1234567890",
"version": 1.
"name": "custom-cae-profile",
"dynamic origin": {
 "dynamic profile options": {
  "min renditions": 2.
  "max renditions": 6.
  "max resolution": {
   "width": 1920,
    "height": 1080
  "max bitrate": 4200.
  "max_first_rendition_bitrate": 400,
  "max frame rate": 30,
  "keyframe rate": 0.5,
  "codecs": ["h264","hevc"],
  "max_granularity": 100,
  "video_configurations": [
     {"width": 1280, "height": 720},
     {"width": 960, "height": 540},
     {"width": 640, "height": 360}
```


RESULTS – ADAPTATIONS TO DIFFERENT TYPES OF CONTENT

Study conducted using:

- 500 assets
- 120 hours of view time
- 34 different content categories
- Including movies, cartons, sports, etc.

Reference profile – Apple TV:

Resolution	Bitrate	Frame rate
416 x 234	145	≤ 30 fps
640 x 360	365	≤ 30 fps
768 x 432	730	≤ 30 fps
768 x 432	1100	≤ 30 fps
960 x 540	2000	same as source
1280 x 720	3000	same as source
1280 x 720	4500	same as source
1920 x 1080	6000	same as source
1920 x 1080	7800	same as source

Relative changes [in %] for each category of content:

Category	Streams	Storage	Bandwidth	Resolution
Action	-35.05	-77.28	-59.16	+3.57
Adventure	-29.63	-70.17	-51.33	+3.32
Comedy	-25.12	-62.16	-41.28	+2.33
Drama	-32.36	-73.29	-55.83	+3.55
Scifi	-31.38	-71.89	-53.17	+3.27
Cartoon	-30.15	-68.82	-47.71	+2.93
Video game	-29.2	-67.76	-46.17	+3.17
Baseball	-21.57	-61.09	-50.89	+0.76
Basketball	-22.1	-57.82	-34.15	+1.72
Boxing	-23.71	-65.33	-43.03	+3.1
Cricket	-14.29	-58.12	-50.13	+0.97
Cycling	-23.11	-58.92	-36.55	+2.35
Field hockey	-22.22	-51.57	-22.66	+1.1
Football	-28.57	-79.12	-52.25	+1.69
Golf	-28.57	-79.38	-74.2	+1.69
Gymnastics	-26.1	-65.45	-44.01	+2.79
Hockey	-22.22	-51.26	-20.39	+0.08

Category	Streams	Storage	Bandwidth	Resolution
Mixed sports	-23.63	-55.47	-29.22	+1.35
Racing	-28.57	-74.68	-66.96	+1.5
Running	-23.3	-56.66	-31.99	+2.52
Squash	-27.56	-67.18	-47.11	+3.22
Swimming	-22.22	-50.04	-19.67	+0.17
Tennis	-18.72	-61.04	-51.44	+1.07
Weightlifting	-31.44	-72.6	-51.66	+3.78
Documentary	-25.72	-59.85	-34.19	+2.19
Game show	-28.16	-65.18	-40.95	+3.02
Interview	-37.33	-81.17	-74.2	+1.6
Kids channel	-24.75	-59.52	-34.04	+1.69
Talk show	-36.07	-77.76	-59.02	+3.99
News	-25.97	-62.36	-39.64	+2.24
Reality TV	-24.94	-58.51	-33.52	+2.46
Sitcom	-31.49	-71.93	-54.04	+3.23
Soap opera	-34.92	-76.61	-58.83	+3.8
Overall	-28.42	-65.64	-43.76	+2.65

RESULTS – ADAPTATIONS TO OPERATORS/NETWORKS

Study considering 3 operators, same content, same reference profiles:

Operator 1:

Device type	Usage [%]	Average bandwidth [Mbps]
PC	0.004	7.5654
Mobile	94.321	3.2916
Tablet	5.514	3.8922
TV	0.161	5.4374
All devices	100	3.3283

Device type	Usage [%]	Average bandwidth [Mbps]
PC	63.49	14.720
Mobile	6.186	10.609
Tablet	9.165	12.055
TV	21.15	24.986
All devices	100	16.393

Operator 3:

Device type	Usage [%]	Average bandwidth [Mbps]
PC	0.0	N/A
Mobile	0.0	N/A
Tablet	0.0	N/A
TV	100	35.7736
All devices	100	35.7736

ADAPTATIONS TO DIFFERENT NETWORKS/DEVICES

Content: movie trailer sequence

CAE encoding profiles generated for different operators:

Operator 1

Stream	Profile	Resolution	Framerate	Bitrate	SSIM
1	Baseline	320x180	30	125	0.9336
2	Baseline	480x270	30	223.08	0.9379
3	Main	640x360	30	398.11	0.9463
4	Main	960x540	30	774.78	0.9495
5	Main	1280x720	30	1549.5	0.9563
6	High	1600x900	30	2765.3	0.9610
7	High	1920x1080	30	4935.1	0.9657
Storage				10771	

Higher density at lower rates

Operator 2:

Stream	Profile	Resolution	Framerate	Bitrate	SSIM
1	Baseline	320x180	30	125	0.9333
2	Baseline	480x270	30	239.71	0.9412
3	Main	640x360	30	469.54	0.9520
4	Main	1024x576	30	939.08	0.9522
5	Main	1280x720	30	1568.8	0.9565
6	High	1600x900	30	2765.3	0.9610
7	High	1920x1080	30	4935.1	0.9657
Storage				11026	

Higher density mid range

Operator 3:

Stream	Profile	Resolution	Framerate	Bitrate	SSIM
1	Baseline	320x180	30	125	0.9344
2	Baseline	512x288	30	307.42	0.9485
3	Main	960x540	30	803.59	0.9505
4	Main	1280x720	30	1727.8	0.9586
5	High	1920x1080	30	5050.7	0.9659
Storage				8014.6	

Fewer renditions! Only last matters!

RESULTS – ADAPTATIONS TO OPERATORS/NETWORKS

Relative performance changes for each operator:

Metric	Operator 1	Operator 2	Operator 3
Renditions	-22.2%	-22.2%	-44.4%
Storage	-57.9%	-56.9%	-68.7%
Bandwidth	-8.4%	-31.3%	-33.8%
Resolution	+27.3%	+6.59%	+2.03%
SSIM	-0.9%	-0.74%	-0.68%
Buffering	-1.74%	-1.04%	-1.56%
Start time	-5.7%	-1.0%	-1.6%

Notes:

- For operator 1, having worst networks, the savings in bandwidth are smaller, but the average delivered resolution increases by 83%
- For operators 2 and 3, the savings in bandwidth increase to 31.3 and 33.89% respectively
- For operator 3, the number of streams is further reduced, leading to significant savings in transcoding and storage costs
- In all cases optimization have also improved start up time and % of time buffering
- All savings are achieved with negligible changes in codec noise as indicated by relative SSIM change values

CONCLUSIONS

- Modern-era OTT video delivery poses a number of challenges, and requires some dedicated tools:
 - Dynamic packaging & delivery
 - addresses the need to support multiple devices, codecs, DRMs, and delivery formats
 - minimizes storage, bandwidth and CDN costs
 - High-scale, high-quality & high-reliability transcoder
 - supporting all sorts of input formats
 - performing pre- and post-quality checks
 - having advanced set of pre-processing tools
 - conformant to existing ecosystem standards and deployment guidelines
 - Context-aware encoding
 - end-to-end optimization tool taking into account specifics of content, usage- and networks statistics
- It is indeed to a lot of fun to build such a system, and
 - even more so to test it and make sure it works at scale!

brightcove THANK YOU!

YURIY REZNIK | YREZNIK@BRIGHTCOVE.COM